我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
过渡到成年是许多家庭的重要生活阶段。先前的研究表明,具有智力或发展的年轻人(IDD)比同龄人面临的挑战更多。这项研究是为了探索如何使用自然语言处理(NLP)方法,尤其是无监督的机器学习,以帮助心理学家分析情绪和情感,并使用主题建模来确定年轻人IDD及其家人所拥有的常见问题和挑战。此外,将结果与从没有IDD的年轻人那里获得的结果进行了比较。研究结果表明,NLP方法对于心理学家分析情绪,进行跨案例分析并从对话数据中汇总关键主题非常有用。我们的Python代码可在https://github.com/mlaricheva/emotion_topic_modeling上找到。
translated by 谷歌翻译
随着自动化许多具有高保真性的化学任务的前景,化学语言处理模型正在快速迅速出现。在这里,我们提出了一个基于云的实时平台,该平台允许用户实际上筛选感兴趣的分子。为此,将杠杆化从最近提出的大型化学语言模型(名为Moleformer)推断出来的分子嵌入。该平台目前支持三个任务:最近的邻居检索,化学空间可视化和财产预测。根据该平台的功能并获得的结果,我们认为这样的平台可以在自动化化学和化学工程研究中起关键作用,并协助药物发现和材料设计任务。在\ url {www.ibm.biz/molecular_demo}提供我们平台的演示。
translated by 谷歌翻译
会话数据在心理学中至关重要,因为它可以帮助研究人员了解个人的认知过程,情感和行为。话语标签是分析此类数据的常见策略。 NLP算法的开发使研究人员可以自动化此任务。但是,心理对话数据给NLP研究人员带来了一些挑战,包括多标签分类,大量类别和有限的可用数据。这项研究探讨了NLP方法生成的自动标签如何与人类在成年过渡的对话的背景下与人类标签相媲美。我们提出了应对心理学研究中提出的三个共同挑战的策略。我们的发现表明,具有领域适应性的深度学习方法(Roberta-Con)优于所有其他机器学习方法。我们提出的分层标签系统被证明可帮助研究人员战略性地分析对话数据。我们的Python代码和NLP模型可在https://github.com/mlaricheva/automated_labeling上获得。
translated by 谷歌翻译
可解释的人工智能是一个研究领域,试图为自动智能系统提供更透明度。已经使用了解释性,尤其是在强化学习和机器人场景中,以更好地了解机器人决策过程。然而,以前的工作已广泛专注于提供技术解释,而不是非专家最终用户可以更好地理解的技术解释。在这项工作中,我们利用从成功的可能性中构建的类似人类的解释来完成自主机器人执行动作后显示的目标。这些解释旨在由没有或很少有人工智能方法经验的人来理解。本文提出了一项用户试验,以研究这些解释的重点是成功实现其目标的概率的解释是否构成了非专家最终用户的合适解释。获得的结果表明,与Q值产生的技术解释相比,非专业参与者的评分机器人的解释侧重于更高的成功概率和差异的差异,并且也赞成反事实解释而不是独立解释。
translated by 谷歌翻译
价值迭代(VI)是一种基础动态编程方法,对于最佳控制和强化学习的学习和计划很重要。 VI分批进行,其中必须完成对每个状态值的更新,然后才能开始下一批更新。如果状态空间较大,完成单批次的昂贵,那么对于许多应用来说,VI不切实际。异步VI通过一次,就地和任意顺序一次更新一个状态来帮助解决大型状态空间问题。但是,异步VI仍然需要在整个动作空间上最大化,这使得对具有较大动作空间的域不切实际。为了解决这个问题,我们提出了双重同步价值迭代(DAVI),这是一种新算法,将异步从各州到州和行动的概念推广。更具体地说,DAVI在可以使用用户定义的大小的采样子集上最大化。使用采样来减少计算的这种简单方法使VI具有类似吸引人的理论属性,而无需等待每个更新中的整个动作空间进行全面扫描。在本文中,我们显示了DAVI收敛到最佳值函数,概率是,以接近几何的速率与概率1-delta收敛,并在计算时间中返回近乎最佳的策略,该策略几乎与先前建立的对VI结合的限制。我们还从经验上证明了Davi在几个实验中的有效性。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
We propose a new causal inference framework to learn causal effects from multiple, decentralized data sources in a federated setting. We introduce an adaptive transfer algorithm that learns the similarities among the data sources by utilizing Random Fourier Features to disentangle the loss function into multiple components, each of which is associated with a data source. The data sources may have different distributions; the causal effects are independently and systematically incorporated. The proposed method estimates the similarities among the sources through transfer coefficients, and hence requiring no prior information about the similarity measures. The heterogeneous causal effects can be estimated with no sharing of the raw training data among the sources, thus minimizing the risk of privacy leak. We also provide minimax lower bounds to assess the quality of the parameters learned from the disparate sources. The proposed method is empirically shown to outperform the baselines on decentralized data sources with dissimilar distributions.
translated by 谷歌翻译
Learning to predict masked tokens in a sequence has been shown to be a powerful pretraining objective for large-scale language models. After training, such masked language models can provide distributions of tokens conditioned on bidirectional context. In this short draft, we show that such bidirectional conditionals often demonstrate considerable inconsistencies, i.e., they can not be derived from a coherent joint distribution when considered together. We empirically quantify such inconsistencies in the simple scenario of bigrams for two common styles of masked language models: T5-style and BERT-style. For example, we show that T5 models often confuse its own preference regarding two similar bigrams. Such inconsistencies may represent a theoretical pitfall for the research work on sampling sequences based on the bidirectional conditionals learned by BERT-style MLMs. This phenomenon also means that T5-style MLMs capable of infilling will generate discrepant results depending on how much masking is given, which may represent a particular trust issue.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译